# Probability of Occurence

Use the POWER(k, n) worksheet function in a cell formula to compute the number of ways of arranging X objects selected from n objects. For example, the formula = POWER(2, 5) computes the answer for Example 4.11.

In equation (4.1) on page 156, the probability of occurrence of an outcome was defined as the number of ways the outcome occurs, divided by the total number of possible outcomes. In many instances, there are a large number of possible outcomes, and determining the exact number can be difficult. In such circumstances, rules have been developed for counting the number of possible outcomes. this section presents five different counting rules.

CoUNTiNg RUle 1

If any one of k different mutually exclusive and collectively exhaustive events can occur on each of n trials, the number of possible outcomes is equal to

kn (4.10)

examPle 4.11 counting Rule 1

Suppose you toss a coin five times. What is the number of different possible outcomes (the sequences of heads and tails)?

SolUTioN If you toss a two-sided coin five times, using equation (4.10), the number of outcomes is 25 = 2 * 2 * 2 * 2 * 2 = 32.

examPle 4.12 Rolling a Die Twice

Suppose you roll a die twice. how many different possible outcomes can occur?

SolUTioN If a six-sided die is rolled twice, using equation (4.10), the number of different outcomes is 62 = 36.

the second counting rule is a more general version of the first and allows for the number of possible events to differ from trial to trial.

Use a formula that takes the product of successive POWER(k, n) functions to solve problems related to counting rule 2. For example, the formula = POWER(26,3)* POWER(10,3) computes the answer for Example 4.13.

CoUNTiNg RUle 2

If there are k 1 events on the first trial, k2 events on the second trial,…, and kn events on

the nth trial, then the number of possible outcomes is

1k121k22 c 1kn2 (4.11)

examPle 4.13 counting Rule 2

a state motor vehicle department would like to know how many license plate numbers are available if a license plate number consists of three letters followed by three numbers (0 through 9).

SolUTioN Using equation (4.11), if a license plate number consists of three letters followed by three numbers, the total number of possible outcomes is 126212621262110211021102 = 17,576,000.

examPle 4.14 Determining the number of Different Dinners

a restaurant menu has a price-fixed complete dinner that consists of an appetizer, an entrée, a beverage, and a dessert. You have a choice of five appetizers, ten entrées, three beverages, and six desserts. Determine the total number of possible dinners.

SolUTioN Using equation (4.11), the total number of possible dinners is 1521102132162 = 900.

4.5 Counting Rules

Z10_LEVI1819_07_OM_BONUS_PP2.indd 1 2/11/13 10:20 AM

4-2 Chapter 4 Basic probability

CoUNTiNg RUle 3

the number of ways that all n items can be arranged in order is

n! = 1n21n – 12 c 112 (4.12) where n! is called n factorial, and 0! is defined as 1.

the third counting rule involves computing the number of ways that a set of items can be arranged in order.

Use the FACT(n) worksheet function in a cell formula to compute how many ways n items can be arranged. For example, the formula = FACT(6) computes 6!

examPle 4.15 counting Rule 3

If a set of six books is to be placed on a shelf, in how many ways can the six books be arranged?

SolUTioN to begin, you must realize that any of the six books could occupy the first posi- tion on the shelf. Once the first position is filled, there are five books to choose from in filling the second position. You continue this assignment procedure until all the positions are occu- pied. the number of ways that you can arrange six books is

n! = 6! = 162152142132122112 = 720

In many instances you need to know the number of ways in which a subset of an entire group of items can be arranged in order. each possible arrangement is called a permutation.

Use the PERMUT(n, x) worksheet function in a cell formula to compute the number of ways of arranging x objects selected from n objects. For example, the formula =PERMUT(6, 4) computes the answer for Example 4.16.

1On many scientific calculators, there is a button labeled npr that allows you to compute permutations. the symbol r is used instead of x.

CoUNTiNg RUle 4: PeRmUTaTioNs

the number of ways of arranging X objects selected from n objects in order is

nPx = n!

1n – x2! (4.13) where

n = total number of objects

x = number of objects to be arranged

n! = n factorial = n1n – 12 c112 P is the symbol for permutations.1

examPle 4.16 counting Rule 4

Modifying example 4.15, if you have six books, but there is room for only four books on the shelf, in how many ways can you arrange these books on the shelf?

SolUTioN Using equation (4.13), the number of ordered arrangements of four books selected from six books is equal to

nPx = n!

1n – x2! = 6!

16 – 42! = 162152142132122112

122112 = 360

Z10_LEVI1819_07_OM_BONUS_PP2.indd 2 2/11/13 10:20 AM

4.5 Counting rules 4-3

CoUNTiNg RUle 5: CombiNaTioNs

the number of ways of selecting x objects from n objects, irrespective of order, is equal to

nCx = n!

x!1n – x2! (4.14)

where n = total number of objects

x = number of objects to be arranged

n! = n factorial = n1n – 12 c 112 C is the symbol for combinations.2

In many situations, you are not interested in the order of the outcomes but only in the number of ways that x items can be selected from n items, irrespective of order. each possible selection is called a combination.

Use the COMBIN(n, x) worksheet function in a cell formula to compute the number of ways of arranging x objects selected from n objects. For example, the formula =COMBIN(6, 4) computes the answer for Example 4.17.

2On many scientific calculators, there is a button labeled nCr that allows you to compute combinations. the symbol r is used instead of x.

If you compare this rule to counting rule 4, you see that it differs only in the inclusion of a term X! in the denominator. When permutations were used all of the arrangements of the X objects are distinguishable. With combinations, the x! possible arrangements of objects are irrelevant.

examPle 4.16 counting Rule 5

Modifying example 4.16, if the order of the books on the shelf is irrelevant, in how many ways can you arrange these books on the shelf?

SolUTioN Using equation (4.14), the number of combinations of four books selected from six books is equal to

nCx = n!

x!1n – x2! = 6!

4!16 – 42! = 162152142132122112 142132122112122112 = 15

Problems for Section 4.5 aPPlyiNg The CoNCePTS 4.52 If there are 10 multiple-choice questions on an exam, each having three possible answers, how many different sequences of answers are there?

4.53 a lock on a bank vault consists of three dials, each with 30 positions. In order for the vault to open, each of the three dials must be in the correct position. a. how many different possible dial combinations are there

for this lock? b. What is the probability that if you randomly select a posi-

tion on each dial, you will be able to open the bank vault? c. explain why “dial combinations” are not mathematical

combinations expressed by equation (4.14).

4.54 a. If a coin is tossed seven times, how many different outcomes are possible?

b. If a die is tossed seven times, how many different out- comes are possible?

c. Discuss the differences in your answers to (a) and (b).

4.55 a particular brand of women’s jeans is available in seven different sizes, three different colors, and three differ- ent styles. how many different jeans does the store manager need to order to have one pair of each type?

4.56 You would like to make a salad that consists of lettuce, tomato, cucumber, and peppers. You go to the supermarket, intending to purchase one variety of each of these ingredients.

Z10_LEVI1819_07_OM_BONUS_PP2.indd 3 2/11/13 10:20 AM

You discover that there are eight varieties of lettuce, four varie- ties of tomatoes, three varieties of cucumbers, and three varie- ties of peppers for sale at the supermarket. If you buy them all, how many different salads can you make?

4.57 a team is being formed that has four different positions. how many different ways are there to assign the four people to the four positions?

4.58 In Major League Baseball, there are five teams in the eastern Division of the National League: atlanta, Florida, New York, philadelphia, and Washington. how many dif- ferent orders of finish are there for these five teams? (as- sume that there are no ties in the standings.) Do you believe that all these orders are equally likely? Discuss.

4.59 referring to problem 4.58, how many different or- ders of finish are possible for the first four positions?

4.60 a gardener has six rows available in his vegetable garden to place tomatoes, eggplant, peppers, cucumbers, beans, and lettuce. each vegetable will be allowed one and only one row. how many ways are there to position these vegetables in this garden?

4.61 there are eight members of a team. how many ways are there to select a team leader, assistant team leader, and team coordinator?

4.62 Four members of a group of 10 people are to be se- lected to a team. how many ways are there to select these members?

4.63 a student has seven books that she would like to place in her backpack. however, there is room for only four books. regardless of the arrangement, how many ways are there of placing four books into the backpack?

4.64 a daily lottery is conducted in which 2 winning num- bers are selected out of 100 numbers. how many different combinations of winning numbers are possible?

4.65 a reading list for a course contains 20 articles. how many ways are there to choose 3 articles from this list?

## Needs help with similar assignment?

We are available 24x7 to deliver the best services and assignment ready within 3-4 hours? Order a custom-written, plagiarism-free paper

Get Answer Over WhatsApp Order Paper Now